Free Energy of the Hydrophobic Interaction from Molecular Dynamics Simulations: The Effects of Solute and Solvent Polarizability

نویسندگان

  • Steven W. Rick
  • B. J. Berne
چکیده

Molecular dynamics simulations are used to calculate the free energy of methane association in water, using the polarizable fluctuating charge model that treats the charges on atomic sites as dynamical variables. Compared with previous studies using nonpolarizable potentials, the inclusion of polarizability leads only to small differences in the methane pair potential of mean force. This is in contradistinction to two previous studies using other polarizable models, which do not agree with the nonpolarizable results or with each other. The potential of mean force is calculated at three different temperatures (283, 298, and 313 K) from which the temperature dependence and also the entropic part of the free energy is examined. It is found that the tendency for methane molecules to aggregate increases with increasing temperature and that aggregation is stablized by entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water.

The hydrophobic interaction, the tendency for nonpolar molecules to aggregate in solution, is a major driving force in biology. In a direct approach to the physical basis of the hydrophobic effect, nanosecond molecular dynamics simulations were performed on increasing numbers of hydrocarbon solute molecules in water-filled boxes of different sizes. The intermittent formation of solute clusters ...

متن کامل

Diffused Solute-Solvent Interface with Poisson-Boltzmann Electrostatics: Free-Energy Variation and Sharp-Interface Limit

A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these...

متن کامل

Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation

The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...

متن کامل

On the influence of solute polarizability on the hydrophobic interaction.

The authors have performed molecular dynamics simulations of polarizable solutes in water to investigate how solute polarizability affects solute-solute hydrophophic interactions. A degree of polarization similar to the one expected in biomolecules, corresponding to a dielectric response of epsilon=2-20, results in dramatic changes in the hydrophobic forces. They find that this degree of polari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997